If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+24^2=51^2
We move all terms to the left:
a^2+24^2-(51^2)=0
We add all the numbers together, and all the variables
a^2-2025=0
a = 1; b = 0; c = -2025;
Δ = b2-4ac
Δ = 02-4·1·(-2025)
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90}{2*1}=\frac{-90}{2} =-45 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90}{2*1}=\frac{90}{2} =45 $
| -4.7c+5.12=-5.4c-1.6 | | 5/7x=5/42 | | 2a^2-37=61 | | y(2/5)=3/20 | | (6x+8)(12x^2-16x-10)=0 | | 0.8r-3.6=0.4 | | 2/x=8/100 | | (9x+2)+Y=180 | | 30^2+b^2=50^2 | | 4t=18-6t | | d-10=10+2d+d | | (x)=3x(4x+2)5 | | -9d+1=10-10d | | h/4-7=10 | | k-45/6=21/4 | | 4t-6+10t=9+9t | | −8x−4+3x+6=27 | | 9y–3–5y=2y–2+9* | | 0=20+32t+-16t2 | | 100^2+b^2=60^2 | | 4t+6t=3 | | p–8=17 | | 0=20+32t+-16t^2 | | 2b+8=-10+10+6b | | 10x−7=4x+11 | | 6-5y=-2-4y | | 4^2x=(1/2)^2x+4 | | 6(x+1)=3(2x+1)+3 | | 7x-7+6x-4=140 | | j=-j+8 | | -106=y+44 | | 42x=(12)2x+4 |